Identification, Control and Hysteresis Compensation of a 3 Dof Metrological Afm

نویسندگان

  • Roel Merry
  • Mustafa Uyanik
  • René van de Molengraft
  • Richard Koops
  • Marijn van Veghel
  • Maarten Steinbuch
چکیده

Atomic Force Microscopes (AFMs) are widely used for the investigation of samples at the nanometer scale. The metrological AFM used in this work uses a 3 degrees-of-freedom (DOFs) stage, driven by piezo-stack actuators, for sample manipulation in combination with a fixed cantilever. The piezostack actuators suffer from hysteresis, which acts as a nonlinear disturbance on the system and/or can change the system dynamics. The contributions of this paper are the application of feedback control to all 3 DOFs of the metrological AFM and the design and application of a hysteresis feedforward for the asymmetric hysteresis present in the system. The amount of coupling between the DOFs is assessed by a non-parametric multiple-input-multipleoutput (MIMO) identification. Since the dynamics appear to be decoupled in the frequency range of interest, feedback controllers are designed for each DOF separately. For the modeling of the asymmetric hysteresis an extended Coleman-Hodgdon model is proposed. This model is used for feedforward compensation of the hysteresis. The combination of feedback control for all DOFs and the asymmetric hysteresis feedforward enables the AFM to track scanning profiles within the sensor bound of 5 nm. Real-time imaging of the sample is possible with an accuracy of 2 nm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Experimental System Identification, Feed-Forward Control, and Hysteresis Compensation of a 2-DOF Mechanism

Most of the micro/nano manipulation mechanisms and systems are commonly based on flexure-based monolithic structures, and are generally driven by piezoelectric actuators. In the presented work, experimental system identification, 1-DOF trajectory tracking with feed-forward control, and hysteresis compensation are investigated. An experimental research facility with laser interferometry-based se...

متن کامل

Multivariable Generalized Bouc-Wen Modeling, Identification and Feedforward Control and Its Application to Multi-DoF Piezoelectric Actuators

In the literature, the generalized Bouc-Wen model can track precisely asymmetric hysteresis nonlinearity. In this paper, we propose to extend this generalized model to multivariable hysteresis model that can track the nonlinearities in multi-degrees of freedom (multi-DoF) hysteretic actuated systems. In particular, these systems are typified by strong hysteresis couplings. Then, a method of ide...

متن کامل

Plug-In Robust Compensator for a 3 DOF Piezoelectric Nanorobotic Positioner

In current AFM-based nanomanipulation systems, the commercial position closedloop controller for piezoelectric nanopositioning stages are implemented with success in a wide range of industrial applications. Even if these controllers operate with satisfactory nominal tracking performance, considerable attention has been focused on appropriate control strategies to compensate hysteresis, nonlinea...

متن کامل

Experimental Hysteresis Identification and Micro-position Control of a Shape-Memory-Alloy Rod Actuator

In order to exhaustively exploit the high-level capabilities of shape memory alloys (SMAs), they must be applied in control systems applications. However, because of their hysteretic inherent, dilatory response, and nonlinear behavior, scientists are thwarted in their attempt to design controllers for actuators of such kind.  The current study aims at developing a micro-position control system ...

متن کامل

Fuzzy gain scheduling of PID controller for stiction compensation in pneumatic control valve

Inherent nonlinearities like, deadband, stiction and hysteresis in control valves degenerate plant performance. Valve stiction standouts as a more widely recognized reason for poor execution in control loops. Measurement of valve stiction is essential to maintain scheduling. For industrial scenarios, loss of execution due to nonlinearity in control valves is an imperative issue that should be t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009